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Routing Methods in Network Optimization

Line planning: simple �ow models
I up to 10% less cost/travel time

by integrating passenger routing
[BN2008]

I 2-22% less travel time by direct
connection routing
[BK2012,K2013,BK2014]

Timetabling: First approaches
I up to 30% less waiting time by

integrating passenger routing
[Lübbe2009]

I 2-15% less travel time by
integrating passenger routing for
aperiodic timetabling
[Schmidt2012,Anhalt2012]
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Lower Bound Routing vs. Shortest Path Routing
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→ Iterated approach can be
suboptimal.
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Periodic Timetabling with Passenger Routing

I Given:
I transportation network
I period time T
I lower and upper time bounds
I passenger demand

I Wanted:
I periodic arrival and departure times

of lines at stations

I Objectives:
I total travel time, total transfer time
I (number of used vehicles)
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Periodic Event Scheduling Problem (PESP)

T = 5

'4 '1 '3 '1 '2 '4

[2, 2] [1, 2] [3, 3] [1, 2] [2, 2]

[Sera�ni and Ukovich, 1989]:

Given: Event-activity network N = (V ,A), period time T ∈ N,
lower and upper time bounds `, u ∈ QA.

Wanted: Timing π ∈ [0, T )V of each event s.t. for all a = (v ,w) ∈ A:

(πw − πv − `a)mod T ≤ ua − `a.

π is called periodic potential.
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Passenger Routing
Passenger demand:

I OD-matrix dst ∈ QV×V

I OD-pairs D = {(s, t) ∈ V × V : dst > 0}
I Passenger paths P

min
∑

(s,t)∈D

∑
p∈Pst

∑
a∈p

dst τa yp

∑
p∈Pst

yp = 1 ∀ (s, t) ∈ D

yp ≥ 0 ∀ p ∈ P

→ Minimize total passenger travel time.
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Passenger Routing & Timetabling
(PTPR)

min
∑

(s,t)∈D

∑
p∈Pst

∑
a∈p

dst τa yp

(πw − πv − `a)mod T ≤ ua − `a ∀ a = (v ,w) ∈ A

(πw − πv − `a)mod T + `a = τa ∀ a = (v ,w) ∈ A

πv ≥ 0 ∀ v ∈ V

τa ≥ 0 ∀ a ∈ A∑
p∈Pst

yp = 1 ∀ (s, t) ∈ D

yp ≥ 0 ∀ p ∈ P .

. Linearization:
periodic o�set variables p ∈ ZA and arc �ow variables w ∈ {0, 1}D×A
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Routing Concepts

Di�erent Routing Concepts

uncapacitated capacitated

LBR
lower bound routing

SPR
shortest path routing

w.r.t. timetable

κ-UPR
unsplittable path routing

κ-MPR
multi-path routing

objective

τtotal- SPR
total travel time

τmax- SPR
maximum travel time
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Lower Bound Routing vs. Shortest Path Routing

Restrict passenger paths P ′ ⊆ P
I lower bound routing (LBR): P ′ shortest path w.r.t. `

→ �xed routing

I shortest path routing (SPR): P ′ = P

→ free routing

Proposition [BHK2015]:

gap(LBR, SPR) := sup
I

v(LBR; I )

v(SPR; I )
=∞
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Maximum Travel Time vs. Total Travel Time

I τtotal- SPR: minimize total travel time
I τmax- SPR: minimize maximum travel time

ε = T +1
k
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≤ |D| ∀ I
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Time-Expanded Passenger Routing Network
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Similar to network used by [Kinder, 2008] and [Müller-Hannemann et al., 2007]

H. Hoppmann - Timetabling and Passenger Routing in Public Transport 16 / 21



Time-Expanded Passenger Routing Network

Tr1 = 3
[1, 2]

Tr2 = 2
[1, 1]

[1,
∞] [2,∞

]

station

T = 6

Lemma: O(T ) transfer arcs.

5 5

4 4

3 3

2 2

1 1

0 0

0 0

1 1

2 2

3 3

4 4

5 5

0

1

2

3

4

5

Similar to network used by [Kinder, 2008] and [Müller-Hannemann et al., 2007]

H. Hoppmann - Timetabling and Passenger Routing in Public Transport 16 / 21



Time-Expanded Passenger Routing Network

Tr1 = 3
[1, 2]

Tr2 = 2
[1, 1]

[1,
∞] [2,∞

]

station

T = 6

Lemma: O(T ) transfer arcs.

5 5

4 4

3 3

2 2

1 1

0 0

0 0

1 1

2 2

3 3

4 4

5 5

0

1

2

3

4

5

Similar to network used by [Kinder, 2008] and [Müller-Hannemann et al., 2007]

H. Hoppmann - Timetabling and Passenger Routing in Public Transport 16 / 21



Time-Expanded Passenger Routing Network

Tr1 = 3
[1, 2]

Tr2 = 2
[1, 1]

[1,
∞] [2,∞

]

station

T = 6

Lemma: O(T ) transfer arcs.

5 5

4 4

3 3

2 2

1 1

0 0

0 0

1 1

2 2

3 3

4 4

5 5

0

1

2

3

4

5

Similar to network used by [Kinder, 2008] and [Müller-Hannemann et al., 2007]

H. Hoppmann - Timetabling and Passenger Routing in Public Transport 16 / 21



Time-Expanded Passenger Routing Network

Tr1 = 3
[1, 2]

Tr2 = 2
[1, 1]

[1,
∞] [2,∞

]

station

T = 6

Lemma: O(T ) transfer arcs.
5 5

4 4

3 3

2 2

1 1

0 0

0 0

1 1

2 2

3 3

4 4

5 5

0

1

2

3

4

5

Similar to network used by [Kinder, 2008] and [Müller-Hannemann et al., 2007]

H. Hoppmann - Timetabling and Passenger Routing in Public Transport 16 / 21



Time-Expanded Line Routing Network

T = 6Tr1 = 3 Tr2 = 2

'0 '0 '1 '2 '1 '0 '0 '1

[3, 3] [0, 1] [1, 1] [1, 2] [0, 0] [1, 1]
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Time-Expanded Integrated Model
(
PTPRT

)
min

∑
(s,t)∈D

∑
p∈Pst

∑
a∈p

dst τa yp linear objective∑
α∈Ar

T (b
r
1)

xα = 1 ∀ r ∈ R∑
α∈δ+(ν)

xα −
∑

α∈δ−(ν)

xα = 0 ∀ ν ∈ VRT \ ṼRT

xα ∈ {0, 1} ∀α ∈ ART


periodic
timetabling

∑
α∈ART (a)

xα −
∑

a′∈AT
a′∼a

∑
p∈P
a′∈p

yp ≥ 0 ∀ a ∈ A∼T (A), ∀ (s, t) ∈ D
}

coupling

∑
p∈Pst

yp = 1 ∀ (s, t) ∈ D

yp ≥ 0 ∀ (s, t) ∈ D,∀ p ∈ Pst .

 passenger
routing

− size

− weak LP-relaxation

+ linear objective

+ di�erent period times

+ di�erentiated transfer times

+ splittable �ow in capacitated case
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Wuppertal

Wuppertaler Stadtwerke

I Wuppertal core network

stations: 158
directed arcs: 460

OD-nodes: 229
OD-pairs: 45 254

lines: 71
period times: 10, 15, 20, 30,

or 60 min

I time-expanded networks
86 386 nodes
431 604 passenger arcs
3 990 line arcs
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First Computational Results for
(
PTPRT

)
I computations with SCIP version 3.1.0 (Cplex 12.6 as LP-solver)

I column generation algorithm for passenger path-�ow variables

I primal heuristic: Route passengers sorted by demand → �x timetable

I preprocessing: remove all passengers that do not transfer

Initial LP: 3 990 binary variables, 76 519 constraints

Solving time root node : 985s

Gap root node : 12.29%

Comparison to reference timetable WSW 2013

travel time in min transfer time in min

WSW 2013 2 630 211.97 171 985.41
WSW* 2 597 571.95 131 456.07

improvement 1.24% 23.57%
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