Timetabling and Passenger Routing in Public Transport

joint work with Ralf Borndörfer and Marika Karbstein

Zuse Institute Berlin

MATHEON - Network design & passenger behaviour in public transport

Routing Methods in Network Optimization

Line planning: simple flow models • up to 10% less cost/travel time

- up to 10% less cost/travel time by integrating passenger routing [BN2008]
- 2-22% less travel time by direct connection routing [BK2012,K2013,BK2014]

Timetabling: First approaches

- up to 30% less waiting time by integrating passenger routing [Lübbe2009]
- 2-15% less travel time by integrating passenger routing for aperiodic timetabling [Schmidt2012,Anhalt2012]

demand: 1 passanger from 4

- 1 passenger from A to B
- 1 passenger from \boldsymbol{B} to \boldsymbol{C}
- routing (right) is optimal for timetable (left) and vice versa

- demand: 1 passanger from 4
 - 1 passenger from A to B
 - 1 passenger from \boldsymbol{B} to \boldsymbol{C}
- routing (right) is optimal for timetable (left) and vice versa

▷ shortest path routing

► demand:

- 1 passenger from A to B
- 1 passenger from ${\it B}$ to ${\it C}$
- routing (right) is optimal for timetable (left) and vice versa

▷ shortest path routing

- demand:
 - 1 passenger from A to B
 - 1 passenger from B to C
- routing (right) is optimal for timetable (left) and vice versa

▷ shortest path routing

- demand:
 - 1 passenger from A to B
 - 1 passenger from \boldsymbol{B} to \boldsymbol{C}
- routing (right) is optimal for timetable (left) and vice versa
- \rightarrow Iterated approach can be suboptimal.

Motivation

Periodic Timetabling with Passenger Routing

Routing Concepts

Time-Expanded Approach

First Computational Results

Periodic Timetabling with Passenger Routing

- transportation network
- period time T
- Iower and upper time bounds
- passenger demand
- Wanted:
 - periodic arrival and departure times of lines at stations
- Objectives:
 - total travel time, total transfer time
 - (number of used vehicles)

Periodic Event Scheduling Problem (PESP)

 $\mathcal{T}=5$

[Serafini and Ukovich, 1989]:

Given: Event-activity network N = (V, A), period time $\mathcal{T} \in \mathbb{N}$, lower and upper time bounds $\ell, u \in \mathbb{Q}^A$.

Wanted: Timing $\pi \in [0, \mathcal{T})^V$ of each event s.t. for all $a = (v, w) \in A$:

$$(\pi_w - \pi_v - \ell_a) \operatorname{mod} \mathcal{T} \le u_a - \ell_a.$$

 π is called *periodic potential*.

Passenger Routing

Passenger demand:

- OD-matrix $d_{st} \in \mathbb{Q}^{V \times V}$
- OD-pairs $\mathcal{D} = \{(s, t) \in V \times V : d_{st} > 0\}$
- Passenger paths P

 $\begin{array}{ll} \min & \sum_{(s,t)\in\mathcal{D}}\sum_{p\in\mathcal{P}_{st}}\sum_{a\in p}d_{st}\,\tau_{a}\,y_{p}\\ & \sum_{p\in\mathcal{P}_{st}}y_{p}=1 \qquad \forall\,(s,t)\in\mathcal{D}\\ & y_{p}\geq 0 \qquad \forall\,p\in\mathcal{P} \end{array}$

 \rightarrow Minimize total passenger travel time.

Passenger Routing & Timetabling (PTPR)

min $\sum \sum \sum d_{st} \tau_a y_p$ $(s,t) \in \mathcal{D} p \in \mathcal{P}_{st} a \in p$ $(\pi_w - \pi_v - \ell_a) \mod \mathcal{T} \leq u_a - \ell_a$ $\forall a = (v, w) \in A$ $\forall a = (v, w) \in A$ $(\pi_w - \pi_v - \ell_a) \mod \mathcal{T} + \ell_a = \tau_a$ $\forall v \in V$ $\pi_{\nu} > 0$ $\forall a \in A$ $\tau_a > 0$ $\sum y_p = 1$ \forall (*s*, *t*) $\in \mathcal{D}$ $p \in \mathcal{P}_{st}$ $y_{p} > 0$ $\forall p \in \mathcal{P}.$

Linearization:

periodic offset variables $p \in \mathbb{Z}^A$ and arc flow variables $w \in \{0,1\}^{\mathcal{D} imes A}$

Motivation

Periodic Timetabling with Passenger Routing

Routing Concepts

Time-Expanded Approach

First Computational Results

Restrict passenger paths $\mathcal{P}' \subseteq \mathcal{P}$

• lower bound routing (LBR): \mathcal{P}' shortest path w.r.t. ℓ

 \rightarrow fixed routing

• shortest path routing (SPR): $\mathcal{P}' = \mathcal{P}$

 $\rightarrow \mathsf{free}\ \mathsf{routing}$

Restrict passenger paths $\mathcal{P}' \subseteq \mathcal{P}$

▶ lower bound routing (LBR): \mathcal{P}' shortest path w.r.t. ℓ

 \rightarrow fixed routing

• shortest path routing (SPR): $\mathcal{P}' = \mathcal{P}$

 $\rightarrow \mathsf{free}\ \mathsf{routing}$

$$\mathsf{gap}(\mathsf{LBR},\mathsf{SPR}) := \sup_{I} rac{v(\mathsf{LBR};I)}{v(\mathsf{SPR};I)} = \infty$$

- τ_{total} -SPR: minimize total travel time
- τ_{max} SPR: minimize maximum travel time

- τ_{total} -SPR: minimize total travel time
- τ_{max} SPR: minimize maximum travel time

Lemma [BHK2015]:

$$\frac{\tau^{\text{total}}(\tau_{\text{max}}\text{-}\operatorname{SPR};I)}{\tau^{\text{total}}(\tau_{\text{total}}\text{-}\operatorname{SPR};I)} \leq |\mathcal{D}| \quad \forall I$$

H. Hoppmann - Timetabling and Passenger Routing in Public Transport

- τ_{total} -SPR: minimize total travel time
- τ_{max} SPR: minimize maximum travel time

$$gap(\tau_{\max} - SPR, \tau_{total} - SPR) := \sup_{I} \frac{\tau^{total}(\tau_{\max} - SPR; I)}{\tau^{total}(\tau_{total} - SPR; I)} = \infty$$

- τ_{total} -SPR: minimize total travel time
- τ_{max} SPR: minimize maximum travel time

Lemma [BHK2015]:

$$\frac{\tau^{\max}(\tau_{\mathsf{total}} - \mathsf{SPR}; I)}{\tau^{\max}(\tau_{\mathsf{max}} - \mathsf{SPR}; I)} \le |\mathcal{D}| \quad \forall I$$

$$ext{gap}(au_{ ext{total}} ext{-} ext{SPR}, au_{ ext{max}} ext{-} ext{SPR}) := \sup_{I} rac{ au^{ ext{max}}(au_{ ext{total}} ext{-} ext{SPR}; I)}{ au^{ ext{max}}(au_{ ext{max}} ext{-} ext{SPR}; I)} = \infty$$


```
gap(\kappa-UPR, \kappa-MPR) = \infty.
```


Motivation

Periodic Timetabling with Passenger Routing

Routing Concepts

Time-Expanded Approach

First Computational Results

Time-Expanded Line Routing Network

Time-Expanded Integrated Model

$\left(PTPR^{\mathcal{T}}\right) \min \sum_{(s,t) \in \mathcal{D}} \sum_{p \in \mathcal{P}_{st}} \sum_{a \in p} d_{st} \tau_a y_p$	linear objective
$\sum_{\alpha \in A^r(b^r)} x_{\alpha} = 1 \qquad \forall r \in \mathcal{R}$	
$\sum_{\alpha \in \delta^+(\nu)} x_\alpha - \sum_{\alpha \in \delta^-(\nu)}^{(\alpha \in \mathcal{V}_{\mathcal{T}}^{(\alpha_1)})} x_\alpha = 0 \qquad \forall \nu \in \mathcal{V}_{\mathcal{T}}^{\mathcal{R}} \setminus \tilde{\mathcal{V}}_{\mathcal{T}}^{\mathcal{R}}$	} periodic timetabling
$egin{array}{ccc} x_lpha &\in \{0,1\} &orall lpha \in \mathcal{A}_\mathcal{T}^\mathcal{R} \end{array}$	J
$\sum_{\alpha \in \mathcal{A}_{\mathcal{T}}^{\mathcal{R}}(a)} x_{\alpha} - \sum_{\substack{a' \in \mathcal{A}_{\mathcal{T}}} \\ a' \sim a} \sum_{\substack{p \in \mathcal{P} \\ a' < p}} y_{p} \geq 0 \forall \ a \in \mathcal{A}_{\mathcal{T}}^{\sim}(\mathcal{A}), \forall \ (s, t) \in \mathcal{D}$	<pre>} coupling</pre>
$\sum_{oldsymbol{r} \in \mathcal{D}} y_{oldsymbol{ ho}} = 1 orall (s,t) \in \mathcal{D}$	passenger
$\stackrel{p\in \mathcal{P}_{st}}{y_p} \geq 0 \forall (s,t) \in \mathcal{D}, \forall p \in \mathcal{P}_{st}.$	f routing

– size

- + linear objective
- + different period times
- + differentiated transfer times
- + splittable flow in capacitated case

Time-Expanded Integrated Model

- (size)
 - weak LP-relaxation +
- + linear objective
 - + different period times
 - + differentiated transfer times
 - + splittable flow in capacitated case

Motivation

Periodic Timetabling with Passenger Routing

Routing Concepts

Time-Expanded Approach

First Computational Results

Wuppertal

Wuppertaler Stadtwerke wsw.

- Wuppertal core network
 - stations: 158 directed arcs: 460 OD-nodes: 229 OD-pairs: 45 254 lines: 71 period times: 10, 15, 20, 30, or 60 min
- time-expanded networks

86 386	nodes
431604	passenger arcs
3 9 9 0	line arcs

First Computational Results for $(PTPR^{T})$

- computations with SCIP version 3.1.0 (Cplex 12.6 as LP-solver)
- column generation algorithm for passenger path-flow variables
- primal heuristic: Route passengers sorted by demand ightarrow fix timetable
- preprocessing: remove all passengers that do not transfer

First Computational Results for $(PTPR^{T})$

- computations with SCIP version 3.1.0 (Cplex 12.6 as LP-solver)
- column generation algorithm for passenger path-flow variables
- primal heuristic: Route passengers sorted by demand ightarrow fix timetable
- preprocessing: remove all passengers that do not transfer

Initial LP: 3990 binary variables, 76519 constraints Solving time root node : 985s Gap root node : 12.29%

First Computational Results for $(PTPR^{T})$

- computations with SCIP version 3.1.0 (Cplex 12.6 as LP-solver)
- column generation algorithm for passenger path-flow variables
- primal heuristic: Route passengers sorted by demand ightarrow fix timetable
- preprocessing: remove all passengers that do not transfer

Initial LP: 3990 binary variables, 76519 constraints Solving time root node : 985s Gap root node : 12.29%

Comparison to reference timetable WSW 2013

	travel time in min	transfer time in min
WSW 2013	2 630 211.97	171 985.41
WSW*	2 597 571.95	131 456.07
improvement	1.24%	23.57%

Bibliography |

Kinder, M. (2008).
 Models for periodic timetabling.
 Diploma thesis.

 Müller-Hannemann, M., Schulz, F., Wagner, D., and Zaroliagis, C. D. (2007).
 Timetable information: Models and algorithms.
 In Geraets, F., Kroon, L., Schoebel, A., Wagner, D., and Zaroliagis, C. D., editors, *Algorithmic Methods for Railway Optimization*, volume 4359 of *Lecture Notes in Computer Science*, pages 67–90. Springer Berlin Heidelberg.

 Serafini, P. and Ukovich, W. (1989).
 A mathematical model for periodic scheduling problems. SIAM Journal on Discrete Mathematics, 2(4):550-581.

Bibliography II

